

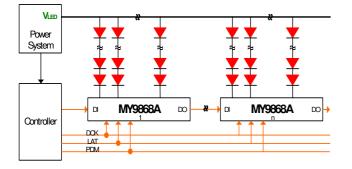
MY9868A

16-Channel Constant Current LED Driver With Double Latch Technology

General Description

The MY9868A, 16-channel constant current LED driver with double latch display technology, is suitable for any static and dynamic applications. The distinctive double latch technology enhances the visual refresh rate and low grayscale uniformity by increasing LED utilization rate. And the ghost image abatement is designed to eliminate ghosting of multiplexing LED modules due to parasitic capacitors.

The device operates over a 3.3V to 5V input voltage range ($\pm 10\%$) and provides 16 open-drain constant current sinking outputs that are rated to 17V and delivers up to 45mA of high accuracy current to each string of LED. The current at each output is programmable by means of an external current-sensing resistor.


The MY9868A's on-board pass elements minimize the need for external components, while at the same time, providing $\pm 3\%$ channel current accuracy and $\pm 4\%$ chip current accuracy. Additional features include a $\pm 0.1\%$ regulated output current capability.

The MY9868A is available in a 24-pin SSOP/QFN package and specified over the -40 $^\circ\rm C$ to +85 $^\circ\rm C$ ambient temperature range.

Applications

- □ Indoor and Outdoor LED Video Displays
- Variable Message Sign (VMS)
- Dot Matrix Module
- $\hfill\square$ Architectural and Decorative Lighting
- Industrial Lighting
- □ LCD Display Backlighting

Typical Operating Circuits

Apr. 2014 Ver. 0.1

Features

- ♦ 3.3V ~ 5.0V Operating supply voltage (±10%)
- ✤ 5~45mA/5V Constant current output range
- ✤ 5~30mA/3.3V Constant current output range
- ♦ 17V Rated output channels for long LED strings
- ★ ±3% (max.) Current accuracy between channels
- ♦ ±4% (max.) Current accuracy between chips
- ±0.1% Output current regulation capability
- Double latch display technology (Patent approved)
- Visual refresh rate, LED utilization rate, grayscale level and low brightness uniformity are better than conventional pure drivers
- Current setting by one external resister
- + Ghost image abatement
- High HBM ESD protection (lout pin > 8000V)
- ◆ -40 °C to +85 °C Ambient temperature range

Order information

Part	Package Information						
MY9868ASS	SSOP24-150mil-0.635mm	2500 pcs/Reel					
MY9868AQF	QFN24-4mmx4mm-0.5mm	3000 pcs/Reel					
MY9868AQA	QFN24-4mmx4mm-0.5mm	3000 pcs/Reel					

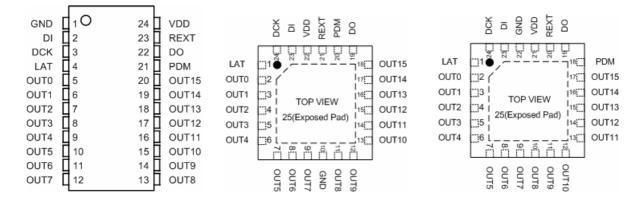
Pin Configuration

GND DI DCK LAT DUT0 DUT1 DUT2 DUT3 DUT4 DUT5 DUT6	1 O 2 3 4 5 6 6 7 7 8 9 10 11	23 R 22 D 21 P 20 O 19 O 18 O 17 O 16 O 15 O	DD EXT O DM UT15 UT14 UT13 UT12 UT11 UT10 UT9	1 2 3 4 5 6	N N N N P Image: S N N N P Image: S N N N P Image: S N N N N N Image: S N N N N N N Image: S N <	
					Lacaca	
OUT7	12	13 0	UT8		7 8 9 10 11	

MY-Semi Inc. 0

For pricing, delivery, and ordering information, pleases contact MY-Semi Inc. at +886-3-560-1668, or email to <u>INFO@MY-Semi.com.tw</u> or visit MY-Semi's website at www.MY-Semi.com.tw

C


0

C

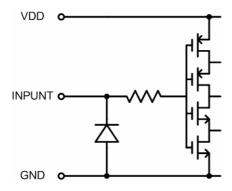
Pin Description

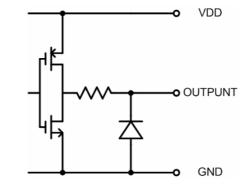
MY9868A SS

MY9868A QF

MY9868A QA

	PIN No.			FUNCTION
SS	QF	QA		FUNCTION
1	10,25	22,25	GND	Ground terminal.
2	23	23	DI	Serial data input terminal.
3	24	24	DCK	Synchronous clock input terminal for serial data transfer.
4	1	1	LAT	Input terminal of data strobe.
5~20	2~9,11~18	2~17	OUT0~15	Sink constant-current outputs (open-drain).
21	20	18	PDM	Grayscale Modulation Input terminal:
22	19	19	DO	Serial data output terminal.
23	21	20	REXT	External resistors connected between REXT and GND for output current value setting.
24	22	21	VDD	Supply voltage terminal.





Equivalent Circuit of Inputs and Output

1. DCK, DI, LAT, PDM terminals

2. DO terminal

Maximum Ratings (Ta=25°C, Tj(max) = 150°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	VDD	-0.3 ~ 7.0	V
Input Voltage	VIN	-0.3 ~ VDD+0.3	V
Output Current	IOUT	45	mA
Output Voltage	VOUT	-0.3 ~ 17	V
Input Clock Frequency	FDCK	30	MHz
GND Terminal Current	IGND	800	mA
Thermal Desistance (On DOD)	Dth(i, c)	70.5 (SS:SSOP-150mil-0.635mm)	- °C/W
Thermal Resistance (On PCB)	Rth(j-a)	36.9 (QT/QE:QFN24-4mmx4mm)	- °C/W
Operating Supply Voltage	VDD	3.3 ~ 5.0 (±10%)	V
Operating Ambient Temperature	Тор	-40 ~ 85	°C
Storage Temperature	Tstg	-55 ~ 150	°C

(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may degrade device reliability. These are stress ratings only and functional operation of the device at these or any other condition beyond those specified is not supported.

(2) All voltage values are with respect to ground terminal.

<u>MY9868A</u>

Electrical Characteristics (VDD = 5.0 V, Ta = 25°C unless otherwise noted)

CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Input Voltage "H" Level	VIH	CMOS logic level	0.7VDD		VDD	- V
Input Voltage "L" Level	VIL	CMOS logic level	GND		0.3VDD	V
Output Leakage Current	ILK	VOUT = 17 V			0.1	uA
	VOL	IOL = 1 mA		_	0.4	- V
Output Voltage (DO)	VOH	IOH= 1 mA	VDD-0.4			V
Output Current Skew (Channel-to-Channel) ^{*1}	dIOUT1	VOUT = 1.0 V	_	±1.0	±3.0	%
Output Current Skew (Chip-to-Chip) ^{*2}	dIOUT2	Rrext = 0.94 KΩ	_	±1.0	±3.0	%
Output Current Skew (Channel-to-Channel)*1	dIOUT3	VOUT = 1.0 V		±1.5	±3.0	%
Output Current Skew (Chip-to-Chip)*2	dIOUT4	Rrext = 3.69 KΩ	_	±1.5	±4.0	%
Output Voltage Regulation*3	% / VOUT	Rrext = 0.94 KΩ VOUT = 1 V ~ 3 V	_	±.0.1		
Supply Voltage Regulation*4	% / VDD	Rrext = 0.94 KΩ VDD = 3 V ~ 5.5 V		±0.6	±1	
	IDD1(off)	input signal is static Rrext = $3.69 \text{ K}\Omega$ all outputs turn off		1.6	_	
	I _{DD2(on)}	input signal is static Rrext = $3.69 \text{ K}\Omega$ all outputs turn on		2.5	_	% / V
Supply Current ^{*5}	IDD3(off)	input signal is static Rrext = 0.94 K Ω all outputs turn off	_	4.5	_	
	I _{DD4(on)}		_	5.5	_	

 *1 Channel-to-channel skew is defined by the formula below: *3

(Ideal Output Current)

Output voltage regulation is defined by the formula below:

$$f_{1} = 100 \text{ J}_{1} = 100 \text{ J$$

$$\Delta(\%) = \left[\frac{Iout_n}{(Iout_0 + Iout_1 + \dots + Iout_{15})} - 1 \right] * 100\%$$

16

 $\Delta(\%) = [(-$

$$\Delta(\%/V) = \left[\frac{Iout_n(@Vout_n = 3V) - Iout_n(@Vout_n = 1V)}{Iout_n(@Vout_n = 3V)} \right] * \frac{100\%}{3V - 1V}$$

^{*2} Chip-to-Chip skew is defined by the formula below:

$$\frac{(Iout_0 + Iout_1 + ... + Iout_{15})}{(Ideal Output Current)} - (Ideal Output Current)$$

$$-]*100\% \qquad \Delta(\%/V) = \left[\frac{Iout_n (@V_{DD} = 5.5V) - Iout_n (@V_{DD} = 3V)}{Iout_n (@V_{DD} = 3V)} \right] * \frac{100\%}{5.5V - 3V}$$

^{*5} IO excluded.

Electrical Characteristics (VDD = 3.3 V, Ta = 25°C unless otherwise noted)

CHARACTERISTIC SYMBOL CONDITION		MIN.	TYP.	MAX.	UNIT	
Input Voltage "H" Level	VIH	CMOS logic level	0.7VDD		VDD	
Input Voltage "L" Level	VIL	CMOS logic level	GND		0.3VDD	V
Output Leakage Current	ILK	VOUT = 17 V			0.1	uA
	VOL	IOL = 1 mA			0.4	N
Output Voltage (DO)	VOH	IOH= 1 mA	VDD-0.4			V
Output Current Skew (Channel-to-Channel) ^{*1}	dIOUT1	VOUT = 1.0 V		±1.0	±3.0	%
Output Current Skew (Chip-to-Chip) ^{*2}	dIOUT2	Rrext = 0.94 KΩ	_	±1.0	±4.0	%
Output Current Skew (Channel-to-Channel)*1	dIOUT3	VOUT = 1.0 V	_	±1.5	±3.0	%
Output Current Skew (Chip-to-Chip)*2	dIOUT4	Rrext = 6.4 K Ω		±1.5	±4.0	%
Output Voltage Regulation*3	% / VOUT	Rrext = 0.94 KΩ VOUT = 1 V ~ 3 V	_	±0.1		
Supply Voltage Regulation*4	% / VDD	Rrext = 0.94 KΩ VDD = 3 V ~ 5.5 V		±0.7	±1	
	IDD1(off)	input signal is static Rrext = 3.69 K Ω all outputs turn off		1.6		
*5	IDD2(on)	input signal is static Rrext = $3.69 K\Omega$ all outputs turn on		2.5		% / V
Supply Current ^{*5}	IDD3(off)	input signal is static Rrext = 0.94 K Ω all outputs turn off	_	4.5		
	I _{DD4(on)}		_	5.5	_	

$$\Delta(\%) = \left[\frac{Iout_n}{(Iout_0 + Iout_1 + \dots + Iout_{15})} - 1 \right] * 100\%$$

*² Chip-to-Chip skew is defined by the formula below:

$$\Delta(\%) = \left[\underbrace{\frac{(Iout_0 + Iout_1 + \dots + Iout_{15})}{16} - (Ideal \ Output \ Curren)}_{(Ideal \ Output \ Curren)} \right] *100\%$$

$$\Delta(\%) = \left[\begin{array}{c} 16 \\ (Ideal Output Curren) \end{array} \right]$$

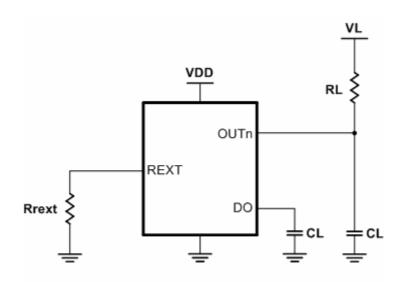
$$\Delta(\%/V) = \left[\frac{Iout_n (@Vout_n = 3V) - Iout_n (@Vout_n = 1V)}{Iout_n (@Vout_n = 3V)} \right] * \frac{100\%}{3V - 1V}$$

^{*4} Supply voltage regulation is defined by the formula below:

$$\Delta(\%/V) = \left[\frac{Iout_n (@V_{DD} = 5.5V) - Iout_n (@V_{DD} = 3V)}{Iout_n (@V_{DD} = 3V)} \right] * \frac{100\%}{5.5V - 3V}$$

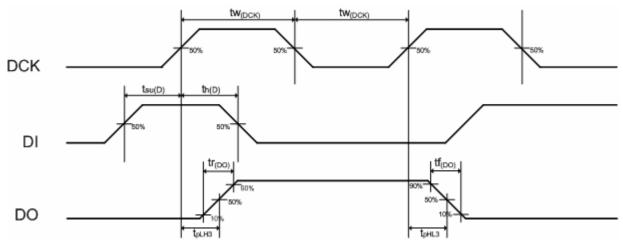
*5 IO excluded.

Switching Characteristics (VDD = 5.0V, Ta = 25°C unless otherwise noted)

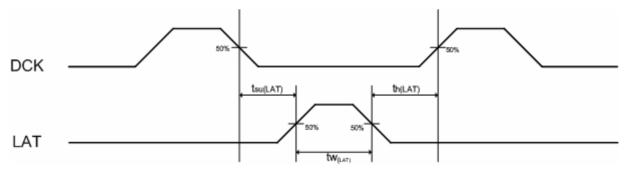

CHAR	ACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation Delay	PDM-to-OUT0	tpLH1					
('L to 'H')	DCK-DO	tpLH3			24		
Propagation Delay	PDM-to-OUT0	tpHL1					
('H' to 'L')	DCK-DO	tpHL3			24		
	PDM	tw _(ENB)		80			
Pulse Duration	LAT	tw _(LAT)	VIH = VDD VIL = GND	20			
	DCK	tw _(DCK)	Rrext = 1820 Ω	15			
Setup Time	LAT	tsu _(LAT)	VL =5.0 V	5			ns
Getup nine	DI	tsu _(D)	RL = 330 Ω	3			
Hold Time	LAT	$th_{(\text{LAT})}$	CL = 13 pF	20			
Hold Hille	DI	th _(D)		4			
DO Rise Time		tr _(DO)			15		
DO Fall Time		$tf_{(DO)}$			15		
Output Voltage Rise Time (turn-off)		tor			35		
Output Voltage Fa	ll Time (turn-on)	tof			35		

Switching Characteristics (VDD = 3.3V, Ta = 25°C unless otherwise noted)

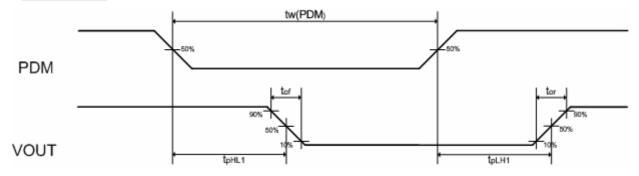
CHAR	ACTERISTIC	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Propagation Delay	PDM-to-OUT0	tpLH1					
('L to 'H')	DCK-to-DO	tpLH3			35		
Propagation Delay	PDM-to-OUT0	tpHL1					
('H' to 'L')	DCK-DO	tpHL3			35		
	PDM	tw _(ENB)		120			
Pulse Duration	LAT	tw _(LAT)	VIH = VDD VIL = GND	20			
	DCK	tw _(DCK)	Rrext = 1820 Ω	15			
Setup Time	LAT	tsu _(LAT)	VL =5.0 V	5			ns
	DI	tsu _(D)	RL = 330 Ω	3			
Hold Time	LAT	$th_{(\text{LAT})}$	CL = 13 pF	20			
Tiold Time	DI	th _(D)		4			
DO Rise Time		tr _(DO)			20		
DO Fall Time		tf _(DO)			20		
Output Voltage Rise Time (turn-off)		tor			55		
Output Voltage Fa	ll Time (turn-on)	tof			50		



Switching Characteristics Test Circuit

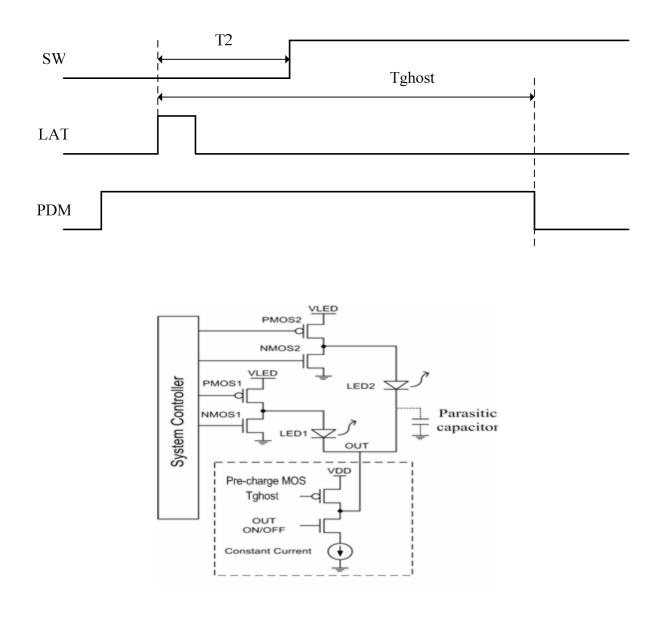


Timing Diagram


1. DCK-DI, DO

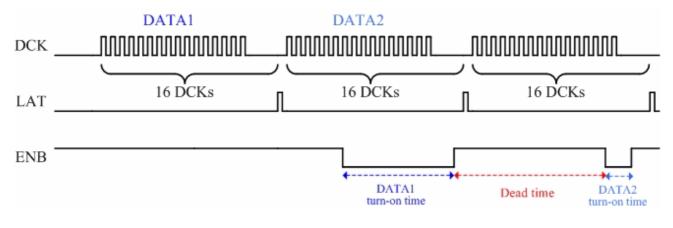
2. DCK-LAT

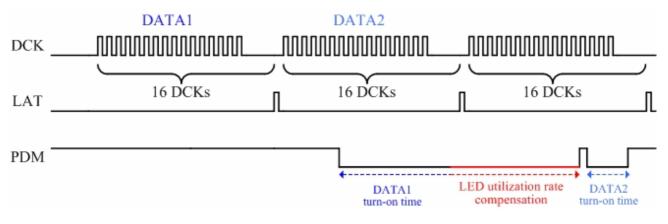
3. PDM-VOUT



Ghost Image Abatement

MY9868A provides internal pre-charge circuit to reduce ghost phenomenon of multiplexing display due to parasitic capacitors. When PDM=high, the voltage of output channels will be pulled high from the rising edge of LAT signal to the falling edge of PDM signal (Tghost), so the reverse bias would only happened in Tghost. Such design can prevent LED damage due to the reverse bias for long time. In Tghost, the high voltage on the parasitic capacitor prevents the inrush current resulting from turning on the switching PMOS of next scan line. (It is recommended to let Tghost \geq 2000ns, where SW signal is the multiplexing switch signal.)

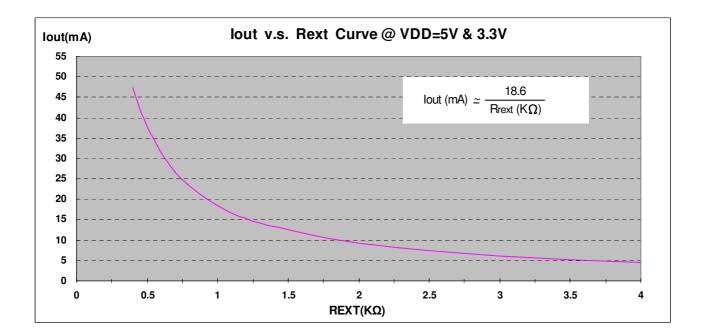



Double Latch Display Technology

MY9868A adopts the new double latch display technology to enhance display effectiveness. By saving an extra bit, MY9868A could receive a control pattern that an PDM signal extends over a LAT signal. The visual refresh rate, the LED utilization rate, the grayscale level and the low grayscale uniformity would be better than conventional pure drivers.

<Convention>

< Double latch technology>

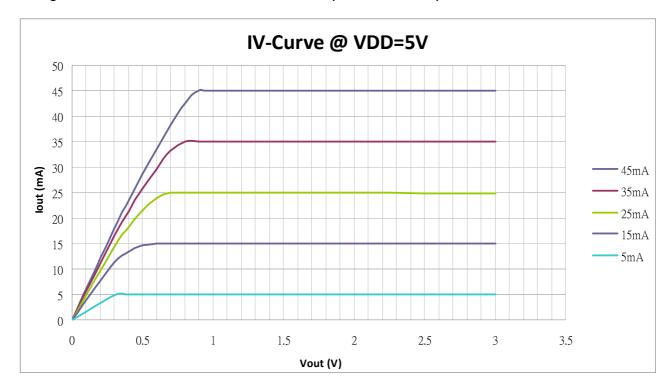

Reference Resistor

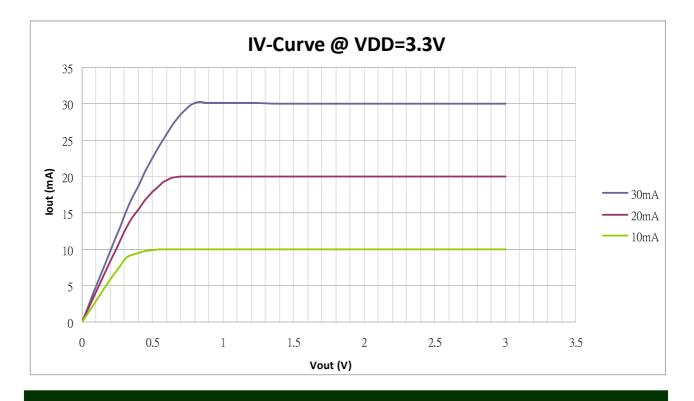
The constant current values are determined by an external resistor placed between REXT pin and GND pin. The following formula is utilized to calculate the current value:

 $Iout(mA) = \frac{18.6}{Rrext (K\Omega)}$

Where Rrext is a resistor placed between REXT and GND

For example, lout is 20mA when Rrext=930 Ω and lout is 5mA when Rrext=3.7K Ω



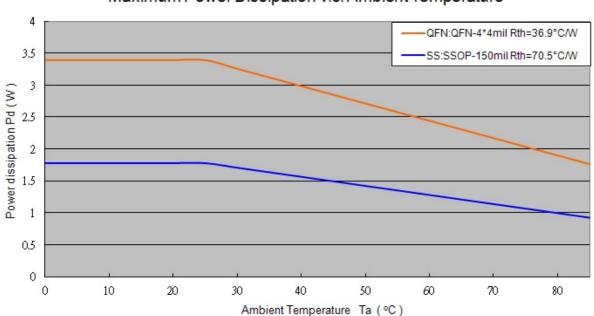

<u>MY9868A</u>

Constant-Current Output

The current characteristics could maintain invariable in the influence of loading voltage. Therefore, the MY9868A could minimize the interference of different LED forward voltages and produce the constant current. The following figures illustrate the suitable output voltage should be determined in order to keep an excellent performance.

16-Channel Constant Current LED Driver with Double Latch technology Copyright ©<u>MY-Semi Inc.</u>

Power Dissipation

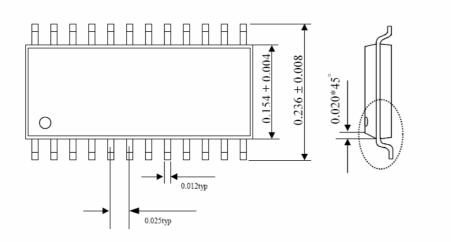

When the 16 output channels are turned on, the practical power dissipation is determined by the following equation:

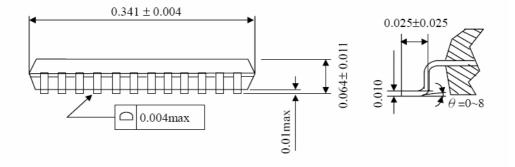
 $PD (practical) = V_{DD} \times I_{DD} + V_{Out_{(0)}} \times I_{Out_{(0)}} \times Dut_{y_{(0)}} + \dots + V_{Out_{(N)}} \times I_{Out_{(N)}} \times Dut_{y_{(N)}}, where N=1 to 15$

In secure operating conditions, the power consumption of an integrated chip should be less than the maximum permissible power dissipation which is determined by the package types and ambient temperature. The formula for maximum power dissipation is described as follows:

$$PD(max) = \frac{Tj(max)(C) - Ta(C)}{Rth(j-a)(C/Watt)}$$

The PD(max) declines as the ambient temperature raises. Therefore, suitable operating conditions should be designed with caution according to the chosen package and the ambient temperature. The following figure illustrates the relation between the maximum power dissipation and the ambient temperature in these two different packages.

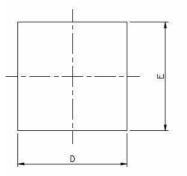

Maximum Power Dissipation v.s. Ambient Temperature

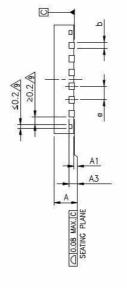


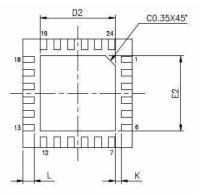
Package Outline Dimension

SSOP-150mil-0.635mm

Unit: inch






Package Outline Dimension

QFN24-4mm x 4mm

JEDEC OUTLINE	MO-220						
PKG CODE	WQFN(X424)						
SYMBOLS	MIN.	MAX.					
A	0.70	0.75	0.80				
A1	0.00	0.02	0.05				
A3	0.20 REF.						
b	0.18	0.25	0.30				
D	4	.00 BS	SC				
E	4.00 BSC						
е	0	.50 BS	SC				
к	0.20	1000					

NOTES :

 ALL DIMENSIONS ARE IN MILLIMETERS.
 DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION & SHOULD NOT BE MEASURED IN THE DAMES ADDR.

MEASURED IN THAT RADIUS AREA. 3. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

E2		D2				LEAD FINISH		JEDEC CODE				
MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	Pure Tin	PPF	JEDEC CODE	
2.40	2.50	2.55	2.40	2.50	2.55	0.35	0.40	0.45	٧	Х	W(V)GGD-8	

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

MY-Semi Inc. will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. MY-Semi Inc. and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.